Learning and Lower Bounds for AC0 with Threshold Gates

نویسندگان

  • Parikshit Gopalan
  • Rocco A. Servedio
چکیده

In 2002 Jackson et al. [JKS02] asked whether AC circuits augmented with a threshold gate at the output can be efficiently learned from uniform random examples. We answer this question affirmatively by showing that such circuits have fairly strong Fourier concentration; hence the low-degree algorithm of Linial, Mansour and Nisan [LMN93] learns such circuits in sub-exponential time. Under a conjecture of Gotsman and Linial [GL94] which upper bounds the total influence of low-degree polynomial threshold functions, the running time is quasi-polynomial. Our results extend to AC circuits augmented with a small super-constant number of threshold gates at arbitrary locations in the circuit. We also establish some new structural properties of AC circuits augmented with threshold gates, which allow us to prove a range of separation results and lower bounds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Average-Case Lower Bounds and Satisfiability Algorithms for Small Threshold Circuits

We show average-case lower bounds for explicit Boolean functions against bounded-depth thresh-old circuits with a superlinear number of wires. We show that for each integer d > 1, there isεd > 0 such that Parity has correlation at most 1/nΩ(1) with depth-d threshold circuits whichhave at most n1+εd wires, and the Generalized Andreev Function has correlation at most 1/2nwith ...

متن کامل

Learning Algorithms from Natural Proofs

Based on Håstad’s (1986) circuit lower bounds, Linial, Mansour, and Nisan (1993) gave a quasipolytime learning algorithm for AC0 (constant-depth circuits with AND, OR, and NOT gates), in the PAC model over the uniform distribution. It was an open question to get a learning algorithm (of any kind) for the class of AC0[p] circuits (constant-depth, with AND, OR, NOT, and MODp gates for a prime p)....

متن کامل

On Tc 0 , Ac 0 , and Arithmetic Circuits 1

Continuing a line of investigation that has studied the function classes #P [Val79b], #SAC1 [Val79a, Vin91, AJMV], #L [AJ93b, Vin91, AO94], and #NC1 [CMTV96], we study the class of functions #AC0. One way to de ne #AC0 is as the class of functions computed by constant-depth polynomial-size arithmetic circuits of unbounded fan-in addition and multiplication gates. In contrast to the preceding fu...

متن کامل

On TC0, AC0, and Arithmetic Circuits

Continuing a line of investigation that has studied the function classes #P [Val79b], #SAC1 [Val79a, Vin91, AJMV], #L [AJ93b, Vin91, AO94], and #NC1 [CMTV96], we study the class of functions #AC0. One way to define #AC0 is as the class of functions computed by constantdepth polynomial-size arithmetic circuits of unbounded fanin addition and multiplication gates. In contrast to the preceding fun...

متن کامل

Multiparty Communication Complexity and Threshold Circuit Size of sfAC0

We prove an nΩ(1)/4k lower bound on the randomized k-party communication complexity of depth 4 AC0 functions in the number-on-forehead (NOF) model for up to Θ(log n) players. These are the first nontrivial lower bounds for general NOF multiparty communication complexity for any AC0 function for ω(log logn) players. For nonconstant k the bounds are larger than all previous lower bounds for any A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2010